
Computational Geometry 13 (1999) 215–228

SOKOBAN and other motion planning problems

Dorit Dor1, Uri Zwick ∗
Department of Computer Science, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel

Communicated by J. Urrutia; submitted 24 September 1996; accepted 15 November 1998

Abstract

We consider a natural family of motion planning problems with movable obstacles and obtain hardness results
for them. Some members of the family are shown to be PSPACE-complete thus improving and extending (and also
simplifying) a previous NP-hardness result of Wilfong. The family considered includes a motion planning problem
which forms the basis of a popular computer game called SOKOBAN. The decision problem corresponding to
SOKOBAN is shown to be NP-hard. The motion planning problems considered are related to the “warehouseman’s
problem” considered by Hopcroft, Schwartz and Sharir, and to geometric versions of the motion planning problem
on graphs considered by Papadimitriou, Raghavan, Sudan and Tamaki. 1999 Elsevier Science B.V. All rights
reserved.

Keywords:SOKOBAN; Motion planning; NP-hardness; PSPACE-completeness

1. Introduction

An instance of a generic motion planning problem consists of a description of an environment,
containing some objects and obstacles, and a description of a desired state, or states, into one of which the
environment is to be transformed. The answer to such an instance is a plan describing the co-ordinated
motion of all the objects and obstacles that satisfies the constraints of the system, or a claim that such a
plan does not exist. The constraints imposed depend on the exact nature of the problem. A constraint that
is almost always used is that objects and obstacles should never overlap.

Various forms of motion planning problems were already considered by many researchers. Geometric
motion planning problems were considered, among others, by Reif [10], Hopcroft et al. [5], Wilfong
[13] and Dhagat and O’Rourke [3]. A motion planning on graphs which forms an abstraction of such
problems was considered by Papadimitriou et al. [9].

In this work we consider a family of motion planning problems obtained by generalizing the rules of
a computer game called SOKOBAN.2 A typical level of SOKOBAN is shown in Fig. 1. Each level

∗Corresponding author. E-mail: zwick@math.tau.ac.il
1 E-mail: ddorit@math.tau.ac.il
2 SOKOBAN, if our sources are correct, is the Japanese word for ‘a warehouse keeper’.

0925-7721/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(99)00017-6

216 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

Fig. 1. Level 40 of SOKOBAN.

is composed of a layout of ‘warehouse’ laid down on a rectangular grid (not shown in the figure).
Each cell of the grid either forms part of the warehouse’s floor, or forms part of a ‘wall’ separating
the warehouse into rooms and halls. Some of the floor cells contain packets. Each packet is a 1× 1
square occupying a single cell (the packets are shown in the figure as disks for aesthetic reasons). A poor
porter is supposed to move these packets to certain designated target positions, shown shaded. The initial
position of the porter is also given. The porter has enough strength to push a single packet. She cannot
push more than one packet at once. She is not able to pull packets. The porter may move freely on
the warehouse’s floor but she is not allowed to step on packets, i.e., she is not allowed to be in a
cell occupied by a packet. Readers interested in playing SOKOBAN may point their WWW client to
http://clef.lcs.mit.edu/˜andru/xsokoban.html. In the SOKOBAN game, all levels,
or puzzles, have solutions, though some of them are extremely long. We are looking at the problem of
deciding whether a given SOKOBAN puzzle has a solution. We show that this problem is NP-hard. It
is an interesting open problem whether this problem is in NP. It is clearly contained in nondeterministic
PSPACE and therefore, by Savitch’s result [11], also in PSPACE.

We let SOKOBAN(k, `) be the following generalization of SOKOBAN. The packets are still 1× 1
squares but the porter is now powerful enough to push up tok packets at once. She can alsopull up to
` packets. For example, suppose that positions(x + 1, y), . . . , (x + r, y) all contain packets and that the
porter is in position(x, y). If position (x + r + 1, y) is vacant andr 6 k, then the porter may push the
packets to positions(x + 2, y), . . . , (x + r + 1, y) and move to position(x + 1, y) while doing so. If
position (x − 1, y) is vacant andr 6 `, then the porter may move to position(x − 1, y) while pulling
the r packets into positions(x, y), . . . , (x + r − 1, y). The most natural choices for` are`= 0 (i.e., no
pulling) and`= 1 (the porter may pull the packet next to her). Note that SOKOBAN(1,0) is the original
SOKOBAN game. As already mentioned, we show that SOKOBAN(1,0) is NP-hard. We also show that
SOKOBAN(k,1) is NP-hard, for everyk > 5, even if the goal is just getting the porter to a specific target
position.

D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228 217

Finally, we let SOKOBAN+(k, `) be a game similar to SOKOBAN but with 1× 2 rectangular packets
instead of the 1× 1 square packets of SOKOBAN. We show that SOKOBAN+(k,1), for anyk > 2, is
PSPACE-complete.

The rest of this paper is organized as follows. We begin in the next section with the PSPACE-
completeness result for SOKOBAN+. In Section 3 we prove that SOKOBAN(k,1), for k > 5, and also
SOKOBAN(∞,1), are NP-hard. Finally, in Section 4 we show that SOKOBAN(1,0), i.e., the original
SOKOBAN game, is also NP-hard. A comparison of our results with previously known results is given
in Section 5. We then end with some concluding remarks and open problems.

2. PSPACE-completeness of SOKOBAN+

In this section we consider a version of SOKOBAN in which the packets are 1× 2 rectangles and
in which the porter has enough strength to push two packets at once (we can allow her to push more
packets at once if we like) as well as the ability ofpulling one packet. We show that the decision problem
corresponding to this version is PSPACE-complete.

The two basic gadgets used in the construction are shown in Figs. 2 and 3. The construct shown on
the left of Fig. 2 is called aone-way corridoras the porter can enter if from the left and leave it from the
right but not vice versa. When the porter enters from the left, she pushes the two packets one position to
the right, goes around and pushes the two packets to their original position and then exits from the right.
If the porter comes from the right, the only thing she can do are the following: she can exit from the right
without moving the packets; she can push the two packets one position to the left, thereby blocking the
passage through the corridor, in both directions, forever; she can pull the right packet one position to the
left but to get out of the bypass she would have to push it back to its original position. In either case, the
porter will not be able to leave the gadget from the left, and will either leave it in its original state, or in a

Fig. 2. A one-way corridor and its schematic description.

Fig. 3. A sliding door and its schematic description.

218 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

Fig. 4. A gate and its schematic description.

state in which it could not be used again in either direction. One-way corridors will be used extensively in
the construction of more complicated gadgets. In these constructions, one way corridors will be depicted
schematically as shown on the right of Fig. 2.

The gadget shown in Fig. 3 is called asliding door. Its functionality is less natural than that of the one-
way corridor but, as we shall see, many useful and more natural gadgets can be obtained using it. The
figure shows the sliding door in its open state. In this state, the porter can freely use the passageI1→O1.
To use the passageI2→O2, the porter must push the right packet one position to the left, thereby moving
the door to its closed position. In this position the porter can freely use the passageI2→O2 but not the
passageI1→ O1. Finally, the porter can open the door again by coming through the corridor marked
by S, pushing the two packets one position to the right and thenpulling the left packet one position to
the left.

By connecting exitO1 to entranceI2 of a sliding door, we get agate, a gadget shown in Fig. 4. The
gadget is shown in the figure in itsopen position. The porter can now move fromI toO but by doing so
she has to move the gate to itsclosed position. The gate can be opened again only by coming through
the corridor denoted byS.

A gate is usually depicted schematically as a box and a circle, as shown on the right of Fig. 4. The
box denotes the gate itself. The circle denotes an activation point of the gate. The dotted line connecting
the gate and its activation point stands for a corridor that connects them. We shall soon describe the
construction of a crossover. Using crossovers we can always construct a corridor connecting a gate and
its activation point. To simplify the diagrams describing our constructions we therefore omit these dotted
lines and do not show these corridors explicitly.

The gate described in Fig. 4 has a single activation point. By connecting such gates in parallel we can
get gates with an arbitrary number of activation points.

Using two sliding doors we can construct acrossover, as shown in Fig. 5. If the porter enters the
crossover throughA she must exit throughC and if she enters throughB she must exit throughD. For
example, if she enters throughA, she must block the passageI2→ O2 when she passes through the
upper sliding door and could only exit throughC. If the porter exits while leaving the upper sliding door
in its closed position, she would not be able to use the passageB→D without previously using the
passageA→ C again. The porter may however move the upper sliding door to itsopen position by
using the corridorS1. Similarly, if she enters throughB, she must block the passageI3→O3 when she
passes through the lower sliding door and could only exit fromD. She can reset the lower sliding door
using the corridorS2.

We now describe a simulation of a linear bounded automata (i.e., a Turing machine with a fixed length
tape) that uses the binary alphabet. The problem of deciding, given such an automata, its initial state,

D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228 219

Fig. 5. Constructing a crossover using two sliding doors.

Fig. 6. The simulation of the Turing machine’s tape.

the initial state of the tape, and the initial position of the head on the tape, whether the head would ever
reach, say, the last (i.e., the rightmost) tape cell is easily seen to be PSPACE-complete.

Let T be a Turing machine withk states. Each cell ofT ’s tape will be simulated by a construct with
k entrances,k exits to the right andk exits to the left. The right (left) exits of a cell are connected to the
entrances of the cell to its right (left). The connection between three adjacent cells, withk = 3, are shown
in Fig. 6. Each connection shown in the figure is a one-way corridor. For simplicity, each cell is shown
to have 2k entrances,k at the top andk at the bottom. These, however, are the same entrances. As we
can implement crossovers we can easily connect each pair of these corridors into the same entrance of
the cell.

The structure of each cell of the Turing machine is depicted in Fig. 7. We again assume in the figure
that k = 3 but the construction clearly generalizes to other values ofk. Each cell of a Turing machine

220 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

Fig. 7. The simulation of each tape cell.

contains 2k+2 gates denoted byB0,B1 andAi,j , where 16 i 6 k andj = 0,1. When the cell is entered,
exactly one of the gatesB0 andB1 is open. GateB0 is open if and only if the tape cell contains 0, and
gateB1 is open if and only if the tape cell contains 1. All theAi,j gates are initially closed.

The cell is entered through theith entrance if and only if the Turing machine is in stateqi . When the
porter enters through theith entrance, she can open one of the gatesAi,0 andAi,1. To be able to leave
the cell, the porter should ‘guess’ the content of the cell and open gateAi,0 if it is 0 andAi,1 if it is 1.
The porter must then ‘read’ the content of the cell by passing through eitherB0 or throughB1 (recall that
exactly one of them is open). BothB0 andB1 are then closed. If the porter guessed correctly the content
j of the cell, she can now pass through gateAi,j . Otherwise, she is stuck. The porter is now in one of
2k corridors, one for each pair(i, j) of state and content. If the Turing machine is supposed to writej ′,
enter stateqi′ and move Left (Right), then the porter may now open gateBj ′ and the corridor she is in
is connected to theith entrance of the cell to the left (right) of the current cell. If the Turing machine is
supposed to halt, then this corridor is a dead end.

This completes the simulation of Turing machines and the PSPACE-completeness proof. The proof
described is for the version of the problem in which there is a terminal position for the porter, not for the
packets. It is easy to obtain a version of the proof that works for the version of the problem in which there
are terminal positions for the packets. We can simply add a packet which the porter has to push when
reaching its terminal position. It is easy to verify that the porter may reach her terminal position while
leaving all crossovers in their original position and all gates in theirclosed position. As a consequence
we get the following result.

Theorem 2.1. SOKOBAN+(k,1) is PSPACE-complete, for everyk > 2.

D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228 221

The general structure of the above construction is similar to the general structure of a construction by
Chalcraft and Greene [1] (see also [12]). Chalcraft and Greene describe a simulation of a Turing machine
using train sets.

3. NP-hardness of SOKOBAN(∞,1)

In this section we show that SOKOBAN(5,1) is NP-hard. Recall that in this version of SOKOBAN
the packets are 1×1 squares and the porter may push up to five packets and pull one. The construction is
similar to the constructions of Wilfong [13] and Dhagat and O’Rourke [3]. The gadgets used, however,
are completely different. While Wilfong uses objects of many different shapes, some of them not even
rectangular, all the objects that and Dhagat and O’Rourke [3] and us use are squares of the same
size. Dhagat and O’Rourke [3] obtain however a different result. They show, in our terminology, that
SOKOBAN(∞,0) is NP-hard. The work of Dhagat and O’Rourke [3] was inspired by a computer game
for Macintosh called “Beast”.

Four basic gadgets are used this time. A one-way corridor is shown in Fig. 8. Anorderer is shown
in Fig. 9. In this gadget, the porter may freely use the passageI1→ O1. It may only use the passage
I2→O2 after using the passageI1→O1 at least once. The passageI2→O2 is opened by pushing the
two packets one position to the right, and then pulling the left packet one position to the left. Aswitch
is shown in Fig. 10. The porter may use only one of the passagesI1→ O1 andI2→ O2, once one of
these passages is used, the other passage is blocked forever. The reader may care to verify that a similar
construct with two pairs of packets instead of two triplets does not function properly. By joining together

Fig. 8. A one way corridor.

Fig. 9. An orderer and its schematic description.

222 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

Fig. 10. A switch and its schematic description.

Fig. 11. A limited crossover.

the two exitsO1 andO2 we get a gadget with two entrances,I1 andI2, and one exit,O. The porter is
now able to use one and only one of the passagesI1→O andI2→O.

A limited crossover is shown in Fig. 11. The porter may use the passageI1→O1 as many times as she
wants. In the first time the passageI1→O1 is used, the three adjacent packets are pushed one position
to the right thus blocking the exitO2. During one of the passages fromI1→O1, the porter may decide
to open the passageI2→O2. To do this the porter uses the bypass, denoted byB, pushes all five packets
one position to the left and then pulls the rightmost packet one position to the right. The porter may then
leave fromO1. The porter will now be able to use the passageI2→O2 for as many times as she wants
but she will not be able to use the passageI1→O1 again. The porter may also use the passageI2→O2

without previously using the passageI1→ O1. It can be verified that whenever the porter enters from
I1 (I2), she must exit throughO1 (O2).

Let F be a 3SAT instance. LetC1, . . . ,Cm be the clauses ofF and letv1, . . . , vn be the variables
appearing inF . We construct a warehouse withm orderers andn switches, as shown in Fig. 12. The two
entrances of thei-switch correspond to the literalsvi andvi . The first exit of theith orderer splits into
three corridors leading to the three literals contained in theith clause. Limited crossover, like the ones

D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228 223

Fig. 12. A representation of a 3SAT instance.

described above are used whenever two corridors cross each other. When a corridor coming from the
ith orderer crosses a corridor coming from thej th orderer, wherei < j , the limited crossover is set so
that the corridor coming from thej th orderer can be used after using the corridor coming from theith
orderer.

The porter starts at positionA. She is supposed to reach positionB. It is easy to see that to reach
positionB, the porter must first use the passage 1→ 2, then 3→ 4, and so forth. After using the passage
1→ 2, the porter must assign the value “true” to at least one of the literals appearing inC1. Similarly, after
using the passage 5→ 6, the porter must assign the value “true” to at least one of the literals appearing
in theC2. The porter cannot assign to value “true” to a literal and its negation. It follows therefore that
the porter can reachB if and only if the 3SAT formulaF is satisfiable.

In the construction described there is again a terminal position for the porter, not for the packets. It is
again possible to alter the proof so that it would also apply to the version of the problem with terminal
positions for the packets. The changes required this time are non-trivial and require a few more gadgets.
We only give a sketch of them here. We addservice entrancesto all the gadgets used in the current
construction. The porter can access these entrances only after reaching her terminal position. Coming
through a service entrance of a gadget, the porter may push the packets contained in the gadget into
appropriate terminal positions within the gadget. We add a corridor that connects the service entrances
of all the gadgets used in the construction. This corridor may, of course, cross corridors of the original
construction. We need a new crossover gadget to handle these crossings.

As a consequence of the above discussion we get the following theorem.

Theorem 3.1. SOKOBAN(k,1), for k > 5, andSOKOBAN(∞,1) are NP-hard.

224 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

4. NP-hardness of SOKOBAN(1,0)

In this section we show that the SOKOBAN(1,0), i.e., the original SOKOBAN game, is NP-hard
by giving a polynomial time reduction to it from the planar 3SAT problem (P3SAT for short) which is
defined before. A different NP-hardness proof for SOKOBAN(1,0) was independently obtained recently
by Fryers and Greene [4].

The P3SAT problem is a sub-problem of the 3SAT problem. An instanceI = (C,X) of 3SAT consists
of a set of clausesC = {C1, . . . ,Cm} and a set of variablesX = {x1, . . . , xn}. Each clauseCi consists of at
most three literalsli,1, li,2, li,3 where a literalli,j is either a variablexk or its negationxk . The problem is
to determine whetherC is satisfiable, that is, whether there exists a Boolean assignment to the variables
which simultaneously satisfies all the clauses inC. A clause is satisfied if one or more of its literals has
value “true”.

For the P3SAT problem, we consider only instancesI = (C,X) of 3SAT whoseconnection graph,
GI = (V ,E), is planar. The vertex set of the graphGI is V =X ∪C. The edge set ofGI is

E = {(xi, xi+1) | 16 i 6 n}∪ {(xj ,Ci) | xj ∈Ci or xj ∈Ci},
where the index ofxi+1 is interpreted modulon. The graphGI contains an edge between each variablex

and each clause that contain eitherx or x. It also contains a simple cycle passing through all the variables.
Lichtenstein [7] showed that the P3SAT problem is NPC. Moreover, he showed [7] that the P3SAT
problem is NPC even when, at every variable vertexx, all edges representing positive instances of the
variable are incident to one ‘side’ of the node and all edges representing negative instances of the variable
are incident to the other ‘side’ of the node, or more precisely, if there is an embedding ofGI in the plane
in which for each variablex, either all clauses containingx are inside the cycle passing through all the
variables and all clauses containingx are outside this cycle, or vice versa.

Given an instanceI of P3SAT, we construct an instanceSI of the SOKOBAN game which has a
solution if and only ifI is satisfiable. Two types of gadgets are used in this construction. For each
variablex, the SOKOBAN instance includes aselector, a gadget shown on the left of Fig. 13. A selector
is connected to the outside world by four corridors denoted byI,O,x andx. CorridorI is main entrance
and corridorO is the main exit of the selector. The other two exits are thex-exit and thex-exit. In
contrast to the previous constructions, all the corridors used in this construction are two-way and the
porter may therefore enter a selector via an exit. This possibility will of course be taken into account.
A selector contains four terminal positions, two in thex-exit and two in thex-exit. Three packets are
initially placed in each selector, one in the entrance and one in each of the literal exits. The selectors will
be depicted schematically as a box, as shown on the right of Fig. 13.

Fig. 13. A selector and its schematic representation.

D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228 225

Fig. 14. A clause gadget and its schematic representation.

Fig. 15. A representation of a P3SAT instance.

The SOKOBAN instanceSI includes a chain of selectors corresponding to the variablesx1, . . . , xn,
as shown in Fig. 15. The main exit of theith selector is connected to the main entrance of the(i + 1)st
selector. Thexi-exit is the upper exit of thei-selector if and only if the clauses that containxi are inside
the cycle ofGI that passes through all the variables. The main entrance of the first selector is connected
to a reservoir containingn+m packets. The main exit of thenth selector is a dead-end (we could have
connected it, via a ‘valve’, back to the reservoir but as this is not required we choose not to do it). For each
clause, the instanceSI contains a gadget like the one shown in Fig. 14. Each such gadget contains one
terminal position. To solve the puzzle, the porter would therefore have to push a single packet to each one
of the clauses. From each literal, we connect corridors to all the clauses containing it. All these corridors
are wide enough so that the porter can push a packet through all the necessary turns. The clauses are
positioned according a planar embedding of the graphGI . There are no intersections therefore between
the different corridors and no crossovers should therefore be used. The initial position of the porter is
inside the reservoir.

It is easy to see that if the P3SAT instance is satisfiable, then the SOKOBAN puzzle constructed
is solvable. The porter begins by taking a stroll through the chain of selectors. In each selector the
porter pushes the packet initially placed at the entrance of the selector and blocks one its literal. The
porter blocks the literal exit that corresponds to the literal that gets the value “false” under a satisfying

226 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

assignment of the P3SAT formula. Each literal exit that corresponds to a “true” literal remains unblocked,
though it still contains the packet initially placed at that exit. The porter may push the original packet
placed in such a literal exit to one of the clauses containing this literal. She may then push packets from
the reservoir through this literal exit to all the other clauses containing this literal. As the unblocked literal
exits correspond to a satisfying assignment of the P3SAT formula, the porter may push a packet to each
one of the clauses. After satisfying all the clauses, the porter pushes additional packets from the reservoir
and blocks all the literal exits of the selectors. This constitutes a solution to the SOKOBAN puzzle.

We now show that if the SOKOBAN instanceSI is solvable then the P3SAT instanceI is satisfiable.
We begin by showing that in any solution of the SOKOBAN puzzle, the first entrance to each selector
contained in the chain of selectors must be through its main entrance and that before leaving the selector
for the first time, the porter must block one of its literal exits. Note that the first entrance to a selector
cannot be through one of its literal exits. If the porter enters a selector for the first time from a literal
exit, she would have to push the packet initially placed in this exit into a corner. The packet could never
be moved out of such a corner and the sequence of moves made by the porter could not be completed
to a solution of the puzzle. If a selector is first entered through its main exit, then one of the selectors
following it in the chain must have been entered, for the first time, though one of their literals exits,
a contradiction. It follows therefore that each selector is indeed first entered through its main entrance.
Consider now the first entrance to theith selector. As this entrance is through its main entrance, the porter
must push the packet initially placed at the entrance of the selector. If the porter pushes this packet past
the two literal exits then this packet and the packet placed at the entrance to the(i + 1)st selector could
never be pushed to terminal positions (the packet at the entrance of the(i + 1)st selector must still be
there as the(i+ 1)st selector was not visited yet). The porter must therefore block one of the literal exits
of the selector, as claimed.

Finally, we observe that a packet can be pushed into a clause only through one of the literal exits that
correspond to the literals that appear in it. Each solution of the SOKOBAN puzzle yields therefore a
satisfying assignment of the P3SAT formula. As a consequence we get the following result.

Theorem 4.1. SOKOBAN(1,0) is NP-hard.

5. Comparison with related works

As mentioned, SOKOBAN is similar to a motion planning problem with ‘movable obstacles’ studied
by Wilfong [13]. In Wilfong’s problem the porter (orrobot, as she is called there) is allowed to push
obstacles. She is also allowed tograspan obstacle and move along with it, as though they were a single
object. In our formulation, grasping is replaced by pulling, which we think is more basic. We obtain a
PSPACE-completeness result while Wilfong only gets an NP-hardness result. In his NP-hardness results,
Wilfong uses objects of several different shapes, not all of them rectangles. Our proof uses only 1× 2
rectangles. Our proof holds even if grasping is allowed and hence Wilfong’s original problem is also
PSPACE-complete. Dhagat and O’Rourke [3] consider motion planning problems in which the porter is
allowed to push objects but not to pull them.

Hopcroft et al. [5] consider a problem they call the “Warehouseman’s problem”. The problem
considered by Hopcroft et al. is a generalization of the famous 15-puzzle. A large rectangle contains
many small rectangles of many different sizes, together with some gaps between them. Rectangles may

D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228 227

be slid, either horizontally or vertically, into gaps. Rectangles are not allowed to overlap. Hopcroft et al.
show that the problem of deciding whether there exists a coordinated motion of the rectangles between
given initial and final configurations is PSPACE-complete. A major difference between their problem
and SOKOBAN is that they have no porter. The rectangles are moved by an agent which is, in a sense,
outside the system. The techniques used by Hopcroft et al. and the techniques used by us in the PSPACE-
completeness proofs are completely different.

Papadimitriou et al. [9] consider a natural motion planning problem on graphs. An instance of the
problem is an undirected graph. There isrobot in one of the vertices of the graph. Several other vertices
contain movableobstacles. In each step, an object (i.e., the robot or an obstacle) may be moved along
an edge into a currently unoccupied vertex. Two objects may never reside in the same vertex. The goal
is to move the robot to a designated vertex, pushing obstacles out of the way, using aminimumnumber
of steps. Papadimitriou et al. show that it is easy to decide whether the robot can at all be moved to its
designated vertex (it can be decided in linear time). They also show that deciding whether the problem
can be solved using at mostk steps, wherek is part of the input, is NP-complete. Although a ‘robot’
appears in the statement of this problem, its role is different from the role played by the robot, or porter,
in our problem. Objects are moved by some outside agent and not by the robot. There are a few natural
ways of defining versions of SOKOBAN that are played on general graphs, not necessarily on rectangular
grids. Studying these versions may be interesting direction for further research.

6. Concluding remarks and open problems

SOKOBAN+ is perhaps the simplest PSPACE-complete motion planning problem. The exact status of
original version of SOKOBAN remains a challenging open problem. We have shown that it is NP-hard
and that it is in PSPACE. Is it in NP? Is it PSPACE-complete?

Note added in proof.Culberson [2] has apparently shown that SOKOBAN is PSPACE-complete, solving
the open problem stated above. Other papers related to SOKOBAN that were brought to our attention are
Junghanns and Schaeffer [6] and Murase et al. [8].

Acknowledgements

We would like to thank Micha Sharir and Pankaj Agarwal for the relevant computational geometry
references, and Michael Greene for a stimulating exchange of e-mail messages.

References

[1] D.A. Chalcraft, M.T. Greene, Train sets, Eureka 53 (1994) 5–12.
[2] J. Culberson, Sokoban is PSPACE-complete (draft), Technical Report TR 97-02, Department of Computer

Science, University of Alberta, 1997. Also available fromhttp://web.cs.ualberta.ca/˜joe/
Preprints/Sokoban/paper.html .

[3] A. Dhagat, J. O’Rourke, Motion planning amidst movable square blocks, in: Proceedings of the 4th Canadian
Conference on Computational Geometry, 1992, pp. 188–191.

228 D. Dor, U. Zwick / Computational Geometry 13 (1999) 215–228

[4] M. Fryers, M.T. Greene, Sokoban, Eureka 54 (1995).
[5] J.E. Hopcroft, J.T. Schwartz, M. Sharir, On the complexity of motion planning for multiple independent

objects; PSPACE-hardness of the “Warehouseman’s problem”, J. Robot. Res. 3 (1984) 76–88.
[6] A. Junghanns, J. Schaeffer, SOKOBAN: Evaluating standard single-agent search techniques in the presence

of deadlock, in: R. Mercer and E. Neufeld (Eds.), Advances in Artificial Intelligence (AI’98), Lecture Notes
in Computer Science, Vol. 1418, Springer, Berlin, 1998, pp. 1–15.

[7] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329–343.
[8] Y. Murase, H. Matsubara, Y. Hiraga, Automatic making of SOKOBAN problems, in: N. Foo and R. Goebel

(Eds.), Proceedings of the 4th Rim International Conference on Artificial Intelligence (PRICAI-96), Lecture
Notes in Artificial Intelligence, Vol. 1114, Springer, Berlin, 1996, pp. 592–600.

[9] C.H. Papadimitriou, P. Raghavan, M. Sudan, H. Tamaki, Motion planning on a graph (extended abstract), in:
Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, Santa Fe, NM, 1994,
pp. 511–520.

[10] J. Reif, Complexity of the movers’ problem and generalizations, in: Proceedings of the 20th Annual IEEE
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1979, pp. 421–427.

[11] W.J. Savitch, Relationship between nondeterministic and deterministic tape complexities, J. Comput. System
Sci. 4 (1970) 177–192.

[12] I. Stewart, A subway named Turing, Scientific American (September 1994) 104–107.
[13] G. Wilfong, Motion planning in the presence of movable obstacles, Ann. Math. Artif. Intell. 3 (1991) 131–150.

